BANQUE D'ÉPREUVES DUT-BTS -SESSION 2018-

ÉPREUVE DE MÉCANIQUE

CODE ÉPREUVE : 970

CALCULATRICE INTERDITE

DURÉE DE L'ÉPREUVE: 2H30

Le système Quanser AERO (**Figure 1**) est un système didactique permettant d'appréhender le fonctionnement et le contrôle dynamique des véhicules de type drone, hélicoptère... Sous l'action de deux propulseurs I et J, le corps (2) peut se mouvoir selon un mouvement de tangage et de lacet autour des axes (O, \vec{z}_0) et (O, \vec{y}_1) .

Figure 1 - Système didactique Quanser AERO

Les deux propulseurs sont orientables et permettent de tester en particulier deux configurations :

- Hélicoptère : les axes de rotation (I, \vec{i}) et (J, \vec{j}) des hélices des propulseurs sont orthogonaux, le propulseur I jouant le rôle du rotor principal et le propulseur J celui du rotor de queue (**Figure 1**).
- Demi-quadrirotor : les axes de rotation (I, i) et (J, j) des hélices des propulseurs sont parallèles (Figure 3).

On donne les caractéristiques géométriques et cinématiques suivantes (Figure 2) :

- La base (0) est munie du repère $\mathcal{R}_0 = (O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$. Le référentiel associé est supposé galiléen.
- Le support de lacet (1) est en liaison pivot d'axe (O, \vec{z}_0) avec la base (0). Le repère $\mathcal{R}_1 = (O, \vec{x}_1, \vec{y}_1, \vec{z}_1)$ est tel que $\vec{z}_1 = \vec{z}_0$ et on note l'angle de lacet $\Psi = (\vec{x}_0, \vec{x}_1) = (\vec{y}_0, \vec{y}_1)$.
- Le corps (2) est en liaison pivot d'axe (Q, \vec{z}_1) aven le support de lacet (1). Le repère $\mathcal{R}_2 = (Q, \vec{x}_2, \vec{y}_2, \vec{z}_2)$ est tel que $\vec{y}_2 = \vec{y}_1$ et on note l'angle de tangage $\theta = (\vec{x}_1, \vec{x}_2) = (\vec{z}_1, \vec{z}_2)$.
- Toutes les liaisons seront supposées parfaites.
- Les centres *I* et *J* des propulseurs montés sur le corps (2) sont tels que $\overrightarrow{OI} = a\vec{x}_2$ et $\overrightarrow{OJ} = -a\vec{x}_2$. L'action de l'air sur le propulseur **I** est modélisée par une résultante $\vec{F}_I = F_I\vec{i}$ et un

Figure 2 – Paramétrage du système Quanser AERO

moment $\vec{M}_I = M_I \vec{i}$ au point *I* portés par l'axe du propulseur **I**. De même, L'action de l'air sur le propulseur **J** est modélisée par une résultante $\vec{F}_J = F_J \vec{j}$ et un moment $\vec{M}_J = M_J \vec{j}$ au point *J* portés par l'axe du propulseur *J*.

• Le corps (2) de masse M a son centre de masse confondu avec O. Le centre de masse G_I du propulseur I de masse m est tel que $\overrightarrow{OG_I} = \overrightarrow{OI} + \overrightarrow{IG_I} = a\vec{x_2} - e\vec{i}$ (Figure 3). Le centre de masse G_J du propulseur J de masse m est tel que $\overrightarrow{OG_J} = \overrightarrow{OJ} + \overrightarrow{JG_J} = -a\vec{x_2} - e\vec{j}$. Le centre de masse de l'ensemble Σ de masse totale m_T constitué du corps (2), du propulseur I et du propulseur J est noté G.

Cet exercice s'intéresse à des configurations stationnaires du système Quanser AERO.

(A) En configuration hélicoptère (**Figure 1**), on a $\vec{i} = \vec{z}_2$ et $\vec{j} = -\vec{y}_1 = -\vec{y}_2$. Le centre de masse *G* de l'ensemble Σ constitué du corps (**2**), du propulseur **I** et du propulseur **J** est tel que :

$$\overrightarrow{OG} = \frac{2em}{M+2m} \left(\vec{y}_2 - \vec{z}_2 \right)$$

(B) En configuration demi-quadrirotor (**Figure 3**), on a $\vec{i} = \vec{j} = \vec{z}_2$ et $\overrightarrow{OG} = -h\vec{z}_2$. L'axe de rotation de lacet est ici bloqué ($\Psi = 0$) comme illustré en **Figure 4**. La commande de la vitesse de rotation des propulseurs est telle qu'on obtient la configuration d'équilibre de la **Figure 4**. On montre que l'angle de tangage θ à l'équilibre est tel que :

$$\tan \theta = \frac{a}{m_T \, g \, h} \left(F_J - F_I \right)$$

(C) Dans la situation de la proposition précédente (configuration demi-quadrirotor et axe de lacet bloqué de la **Figure 4**), si la commande de la vitesse de rotation des propulseurs est telle que $F_I = -F_J$, on ne peut théoriquement pas trouver de configuration d'équilibre.

Figure 3 – Position de référence, moteurs non alimentés, du système en configuration demiquadrirotor ($\theta = 0$)

Figure 4 – Système en configuration demi-quadrirotor : axe de lacet bloqué ($\Psi = 0$) et rotation θ autour de l'axe de tangage

- (D) En configuration demi-quadrirotor, l'axe de rotation de tangage est maintenant bloqué ($\theta = 0$) mais plus l'axe de lacet comme illustré en **Figure 5**. On suppose que la vitesse de rotation initiale est nulle : $\dot{\Psi}(t = 0) = 0$. Si la commande de la vitesse de rotation des propulseurs est telle que $M_I = -M_J$, le système reste en position repos et $\dot{\Psi} = 0 \forall t$.
- (E) Comme pour la proposition précédente, en configuration demi-quadrirotor, l'axe de rotation de tangage est toujours bloqué ($\theta = 0$) comme illustré en **Figure 5**. On suppose que la vitesse de rotation initiale est nulle : $\Psi(t = 0)$. De plus, la commande de la vitesse de rotation des propulseurs est telle que la somme $M_I + M_J$ soit non nulle et constante. La vitesse de rotation Ψ de l'ensemble autour de l'axe de lacet augmente linéairement par rapport au temps.

Figure 5 – Système en configuration demi-quadrirotor : axe de tangage bloqué ($\theta = 0$) et rotation Ψ autour de l'axe de lacet

On s'intéresse toujours au système didactique Quanser AERO (**Figure 1**) de l'exercice précédent dont on reprend les notations. On se place ici dans la configuration hélicoptère (**Figure 1**). Ainsi, on a $\vec{i} = \vec{z}_2$ et $\vec{j} = -\vec{y}_1 = -\vec{y}_2$. Les axes de lacet et de tangage sont débloqués.

On supposera pour simplifier que les propulseurs sont assimilés à des masses ponctuelles *m* placées aux points *I* et *J* (c'est-à-dire e = 0). On notera Σ le système constitué du corps (2), du propulseur I et du propulseur J. On précise que le corps (2) de masse *M* est assimilé à un cylindre plein d'axe (O, \vec{x}_2) de section droite circulaire de rayon *r*, de longueur 2*a* et de centre de masse *O*.

On s'intéresse dans cet exercice au comportement dynamique du système.

(A) Sous les hypothèses énoncées, la matrice d'inertie en O du système Σ est de la forme :

$$\mathbf{I}_O(\Sigma) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & B \end{pmatrix}_{(\vec{x}_2, \vec{y}_2, \vec{z}_2)} \quad \text{avec} \quad A = \frac{Mr^2}{2} \quad \text{et} \quad B = \frac{Mr^2}{4} + \frac{Ma^2}{12} + 2ma^2$$

(B) Le moment cinétique de Σ au point *O* dans son mouvement par rapport à \mathcal{R}_0 s'écrit :

$$\vec{\sigma}(O,\Sigma/\mathcal{R}_0) = \begin{pmatrix} -A\,\dot{\Psi}\,\sin\theta\\ B\dot{\theta}\\ B\dot{\Psi}\cos\theta \end{pmatrix}_{\mathcal{R}}$$

(C) Le moment cinétique de Σ au point *O* dans son mouvement par rapport à \mathcal{R}_0 est supposé s'écrire sous la forme :

$$\vec{\sigma}(O, \Sigma/\mathcal{R}_0) = \alpha \vec{x}_2 + \beta \vec{y}_2 + \gamma \vec{z}_2$$

La projection sur \vec{y}_2 du moment dynamique de Σ au point *O* dans son mouvement par rapport à \mathcal{R}_0 est :

$$\vec{\delta}(O,\Sigma/\mathcal{R}_0)\cdot\vec{y}_2 = \dot{\beta} + \alpha\dot{\Psi}\sin\theta + \gamma\dot{\Psi}\cos\theta$$

(D) Avec les notations de l'item précédent, on montre que la projection sur \vec{z}_0 du moment dynamique de Σ au point *O* dans son mouvement par rapport à \mathcal{R}_0 est :

$$\delta(O,\Sigma/\mathcal{R}_0)\cdot\vec{z}_0=-\alpha\sin\theta+\gamma\cos\theta$$

(E) On néglige l'inertie du support de lacet (1). On montre dans cette configuration hélicoptère que :

$$\begin{cases} \vec{\delta}(O,\Sigma/\mathcal{R}_0) \cdot \vec{y}_2 &= -aF_I - M_J \\ \vec{\delta}(O,\Sigma/\mathcal{R}_0) \cdot \vec{z}_0 &= (aF_J + M_I)\cos\theta \end{cases}$$

Exercice 3

On s'intéresse toujours au système didactique Quanser AERO (**Figure 1**) des deux exercices précédent dont on reprend les notations. On se place toujours dans la configuration hélicoptère (**Figure 1**). Ainsi, on a $\vec{i} = \vec{z}_2$ et $\vec{j} = -\vec{y}_1 = -\vec{y}_2$. On conserve également les hypothèses de l'exercice précédent concernant l'assimilation des propulseurs à des masses ponctuelles positionnées en *I* et *J*.

Par ailleurs, on néglige toujours l'inertie du support de lacet (1). On rappelle que le système Σ est constitué du corps (2), du propulseur I et du propulseur J. On rappelle aussi que toutes les liaisons seront supposées parfaites.

Cet exercice porte sur une approche énergétique.

(A) L'énergie cinétique du système Σ dans son mouvement par rapport au bâti **0** est :

$$T(\Sigma/\mathcal{R}_0) = \frac{1}{2} \left(A \sin^2 \theta + B \cos^2 \theta \right) \dot{\Psi}^2 + \frac{1}{2} B \dot{\theta}^2$$

- (B) Bien que les liaisons soient supposées parfaites, la puissance galiléenne $\mathcal{P}((1) \rightarrow \Sigma/\mathcal{R}_0)$ des actions du support de lacet (1) sur Σ peut être non nulle si l'inertie de (1) n'est pas négligée.
- (C) La puissance galiléenne des actions de pesanteur sur Σ est nulle :

$$\mathcal{P}(pesanteur \rightarrow \Sigma/\mathcal{R}_0) = 0$$

(D) La puissance galiléenne des efforts extérieurs sur Σ est :

$$\mathcal{P}(\overline{\Sigma} \to \Sigma/\mathcal{R}_0) = a F_J \dot{\Psi} \cos \theta - a F_I \dot{\theta}$$

où $\overline{\Sigma}$ représente tous les éléments extérieurs à Σ .

(E) Le théorème de l'énergie cinétique appliqué à Σ donne une équation scalaire supplémentaire indépendante des équations scalaires fournies par le principe fondamental de la dynamique appliqué à Σ .

Exercice 4

On s'intéresse à l'action d'un des patins d'un étrier de frein de vélo (**Figure 6**). Le patin, supposé de forme parallélépipédique, frotte sur la jante. Le patin (1) est en liaison glissière d'axe \vec{z} avec le bâti (0) (**Figure 7**). Le rayon de la jante (2) étant très grand devant les dimensions de la surface de contact, on propose le modèle simplifié de la **Figure 7**. Ainsi, la liaison entre la jante (2) et le bâti (0) peut être

Figure 6 – Etrier de frein de vélo

modélisée par une liaison glissière d'axe \vec{x} .

La surface de contact est supposée être plane de forme rectangulaire, de longueur *L* et de hauteur *h*. Le point *O*, appartenant au patin (1), est un point particulier de la surface de contact situé à la moitié de la hauteur et à l'extrémité de la surface de contact comme représenté en **Figure 7**. Ce point *O* est tel que $\overrightarrow{CO} = -H\vec{z} - l\vec{x}$ où *C* désigne un point arbitraire du plan (O, \vec{x}, \vec{z}) que l'on choisit, pour fixer les idées, sur l'axe de la glissière entre le patin et le bâti comme représenté sur la **Figure 7**. Un point *M* quelconque de la surface de contact est tel que $\overrightarrow{OM} = x\vec{x} + y\vec{y}$. On applique sur le patin un effort $\vec{F} = -F\vec{z}$ dont le support est l'axe (C, \vec{z}) .

On note f le coefficient de frottement de glissement entre le patin et la jante. On suppose une répartition de pression au niveau du contact patin-jante de la forme :

$$p(x,y) = p(x) = p_0 + p_1 x$$

où p_0 et p_1 sont deux constantes positives.

La jante est animée d'un mouvement de translation uniforme par rapport au bâti de vitesse $\vec{V}(O, 2/0) = V_0 \vec{x}$ avec $V_0 > 0$. Toutes les liaisons seront supposées parfaites hormis la liaison entre le patin et la jante.

(A) Le torseur en *C* des actions mécaniques transmissibles au travers de la liaison entre le bâti **0** et le patin **1** est de la forme :

$$\left\{ \mathcal{T}_{(\mathbf{0}\to\mathbf{1})} \right\} = \left\{ \begin{array}{c|c} X_C & L_C \\ Y_C & M_C \\ 0 & 0 \end{array} \right\}_{(C,\vec{x},\vec{y},\vec{z})}$$

(B) A la limite du glissement, la résultante des actions de contact du patin (1) sur la jante (2) est :

$$\overrightarrow{F}(1 \rightarrow 2) = -N\vec{z} - fN\vec{x}$$
 avec $N = hL\left(p_0 + p_1\frac{L}{2}\right)$

(C) Toujours en se plaçant à la limite du glissement, les composantes suivant \vec{x} et \vec{z} du moment en *C* de l'action de liaison exercée par le bâti **0** sur le patin **1** sont nulles.

Figure 7 – Schématisation et géométrie du contact entre le patin de frein et la jante

(D) A la limite du glissement, le moment en C suivant \vec{y} des actions de contact du patin (1) sur la jante (2) vaut :

$$\vec{M}(C, 1 \to 2) \cdot \vec{y} = \frac{hL}{2} \left(p_0(L - 2l) + \frac{p_1}{3}(2L^2 - 3l) \right)$$

(E) Lors du freinage et si l'on suppose que la pression de contact est uniforme $(p(x, y) = p_0)$, la composante de moment suivant \vec{y} des actions de liaison exercées par le bâti **0** sur le patin **1** en *C* est nulle si :

$$l = \frac{L}{2} + fH$$

Exercice 5

On s'intéresse à un arbre en acier de module d'Young *E*, de coefficient de Poisson v. Cet arbre est modélisé par une poutre droite de longueur *L*, sollicitée par un couple $-C\vec{x}$ à son extrémité *A* et un couple $C\vec{x}$ à son autre extrémité *B*. On se propose de montrer l'intérêt d'avoir recours à un arbre tubulaire (section S_2 de diamètre intérieur *d* et de diamètre extérieur *D*) plutôt qu'à un arbre plein (section S_1 de diamètre ϕ).

(A) Le module de cisaillement G du matériau peut s'exprimer en fonction du module d'Young E et du coefficient de Poisson v par l'expression suivante :

$$G = \frac{E}{2(1+\mathbf{v})}$$

(B) Le moment quadratique polaire I_2 de la section creuse S_2 par rapport à l'axe (G, \vec{x}) est :

$$I_2 = \frac{\pi}{64} (D^4 - d^4)$$

Figure 8 – Arbre en torsion : section pleine S_1 ou creuse S_2

(C) Si le critère de dimensionnement est la limite d'élasticité, le couple maximal admissible C_{adm} que peut supporter l'arbre à section pleine est tel que :

$$C < C_{adm} = \frac{\pi D^3 \tau_y}{16}$$

où τ_v est la limité d'élasticité de la contrainte de cisaillement.

(D) L'énergie de déformation totale de l'arbre à section creuse sollicité en torsion est :

$$E_{def} = \frac{C^2}{2GI_2}$$

(E) Pour une déformation angulaire identique sous l'action du couple *C*, le rapport entre la masse m_2 d'un arbre de section creuse S_2 et celle m_1 d'un arbre de section pleine S_1 peut être exprimé en fonction du rapport $k = \frac{d}{D}$ par la relation :

$$\frac{m_2}{m_1} = \frac{1 - k^2}{\sqrt{1 - k^4}}$$

Exercice 6

- (A) Dans le cas d'une lubrification à la graisse d'un palier, l'orientation de la lèvre d'un des joints d'étanchéité à lèvre à frottement radial doit être telle qu'elle permette l'évacuation de graisse usagée lors des renouvellements de la graisse par pompe à graisse.
- (B) Dans le procédé de brasage, la liaison entre les pièces à assembler est obtenue par l'intermédiaire d'un métal d'apport dont la température de fusion est supérieure à celle des pièces à assembler.
- (C) La raison basique (ou la raison du train de base) notée λ d'un train épicycloïdal (ou planétaire) est le rapport du train simple d'engrenages obtenu lorsqu'on bloque le porte-satellite.
- (D) L'angle entre les axes de deux arbres accouplés par un joint de cardan peut aller jusqu'à 45° pour des vitesses très lentes.
- (E) La longueur d'implantation recommandée d'un goujon dans un matériau tendre (ex : alliage d'aluminium) est égale à 1.5 fois le diamètre nominal du goujon.

Figure 9 – Liaison pivot (source FAG)

La Figure 9 représente une liaison pivot entre un arbre et un carter.

- (A) Le roulement de gauche est un roulement à rouleaux coniques.
- (B) Le roulement de droite est un roulement à billes à contact radial.
- (C) Les deux roulements sont dits « montés en O ».
- (D) Dans ce système, les roulements sont lubrifiés à la graisse.
- (E) La durée de vie des deux roulements peut être calculée en utilisant la formule $L = (C/P)^{\alpha}$ où L est la durée de vie nominale (en millions de tours), C la charge dynamique de base (en kN), P la charge dynamique radiale équivalente (en kN) et $\alpha = 3$.

Exercice 8

Figure 10 – Poutre en flexion

On reprend la liaison de l'exercice précédent, mais on s'intéresse maintenant au dimensionnement de l'arbre vis-à-vis des sollicitations de flexion induites par la présence d'un engrenage à chacune des extrémités. Le modèle qui est proposé est celui de la **Figure 10**, où ne sont représentées que les actions mécaniques prises en compte ici. Pour simplifier, on s'intéresse ainsi à une poutre de longueur L+2a, de section constante *S* (de diamètre *d*) et de moment quadratique en flexion *I*. Celle-ci est en appui au niveau des points *B* et *C* et soumise à des glisseurs $\vec{F} = -F \vec{y}$ en *A* et *D*. Le matériau est supposé homogène, élastique et isotrope, de module d'Young *E*. On se place dans le cadre de la théorie d'Euler-Bernoulli. Classiquement, dans le cadre de la théorie des poutres, on prendra comme convention que le torseur de cohésion à l'abscisse *x* représente l'action mécanique intérieure exercée par la partie située en aval (> x) sur la partie amont située en (< x).

(A) Les réactions d'appui en *B* et *C*, notées \vec{R}_B et \vec{R}_C sont telles que :

$$\|\vec{R}_B\| = \|\vec{R}_C\| = \frac{L}{2a}F$$

(B) Le moment quadratique de flexion en G autour de \vec{z} de la section S est :

$$I=\pi\frac{d^4}{32}$$

(C) Le moment fléchissant selon \vec{z} dans la poutre pour 0 < x < L est indépendant de x et vaut :

$$M(x) = -aF$$

- (D) La poutre est en flexion pure entre B et C.
- (E) La contrainte normale maximale due à la flexion dans une section droite où le moment fléchissant est M(x) est telle que :

$$|\sigma_{\max}(x)| = \frac{|M(x)|a|}{EI}$$

Exercice 9

- (A) L'ordre de grandeur du module d'Young d'un acier usuel est 210 MPa.
- (B) Une contrainte s'exprime en MPa, c'est-à-dire en N/m^2 .
- (C) L'acier de désignation 30 Cr Ni Mo 16 comporte 30% de carbone et 16% de nickel, 16% de nickel et 16% de molybdène.
- (D) Une forte teneur en carbone permet de rendre un acier inoxydable.
- (E) Les essais Brinell et Rockwell visent à mesurer la dureté d'un matériau.

Exercice 10

On considère le réducteur épicycloïdal de la **Figure 11**, schématisé par quatre solides (0,1,2,3). Pour simplifier, on a en effet considéré un satellite unique. On suppose que l'arbre d'entrée est le solide 1 et l'arbre de sortie le solide 2. Le repère $R_0 = (O, \vec{x}, \vec{y}, \vec{y})$, lié au solide 0, est fixe. Le référentiel correspondant est supposé galiléen. Ce réducteur comporte deux engrenages : un premier, composé d'une couronne à Z_0 dents liée à 0 qui engrène sur un pignon à Z_3 dents lié au satellite 3; un second, composé d'une couronne à Z_2 dents liée à 2 qui engrène sur un pignon à $Z_{3'}$ dents lié au satellite 3. On note $\vec{\Omega}(i/j) = \omega(i/j)\vec{x}$ le vecteur vitesse de rotation du solide i par rapport au solide j.

- (A) Si le contact entre les dents des engrenages est modélisé par une liaison linéaire rectiligne (ou arête-plan), le modèle tridimensionnel du réducteur est hyperstatique de degré 1.
- (B) En conservant cette modélisation, si on remplaçait les liaisons pivots 0-1 et 0-2 par des rotules, le modèle tridimensionnel du réducteur serait isostatique.

Figure 11 – Réducteur épicycloïdal

(C) Le rapport de réduction du réducteur est :

$$\frac{\omega(2/0)}{\omega(1/0)} = 1 - \lambda \quad \text{avec} \quad \lambda = \frac{Z_0 Z_{3'}}{Z_3 Z_2}$$

- (D) On aurait pu ajouter une couronne liée au bâti **0** et engrenant sur le pignon de nombre de dents $Z_{3'}$ sans modifier le fonctionnement ni le rapport de réduction du train.
- (E) Dans les trains épicycloïdaux, une attention particulière doit être apportée au nombre de dents des engrenages afin d'assurer la montabilité de l'ensemble.

Exercice 11

On reprend le réducteur de la question précédente et on note I le point particulier où il y a roulement sans glissement entre **3** et **0** et J le point particulier où il y a roulement sans glissement entre **3** et **2**.

- (A) Le mouvement du satellite 3 par rapport au bâti 0 est une épicycloïde.
- (B) La condition de roulement sans glissement en *I* du solide **3** par rapport au solide **0** se traduit par :

$$\vec{V}(I,3/0) = \vec{\Omega}(3/0) \wedge \overrightarrow{OI} = \vec{0}$$

(C) La condition de roulement sans glissement en *J* du solide **3** par rapport au solide **2** se traduit par :

$$ec{V}(J,2/0)=ec{\Omega}(2/0)\wedge \overrightarrow{OJ}=ec{0}$$

- (D) Il résulte de ces deux conditions de roulement sans glissement que le point A est animé d'une trajectoire circulaire autour de l'axe (O, \vec{x}) .
- (E) Si le mouvement de 2 par rapport à 0 est bloqué, l'ensemble l'est aussi.

Figure 12 – Spécifications géométriques

On s'intéresse aux spécifications géométriques de la Figure 12.

- (A) La spécification (a) est une tolérance dimensionnelle.
- (B) La spécification (b) est une localisation.
- (C) Les spécifications (b) et (c) sont redondantes dans la mesure où si (b) est vérifiée alors (c) l'est aussi.
- (D) La surface de référence B de la spécification (d) est le plan des moindres carrés associé à la surface réelle B et perpendiculaire au plan des moindres carrés associé à la surface réelle A.
- (E) Le symbole E cerclé associé à la spécification (e) signifie que la surface réelle réputée cylindrique spécifiée doit, entre autres, être comprise dans un cylindre parfait de diamètre Ø9,8 mm.