Avertissement concernant l'ensemble de l'épreuve :

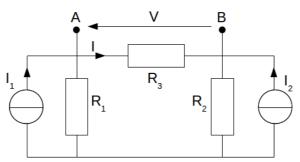
Pour chaque question, indiquez sur le document-réponse si les affirmations suivantes sont vraies ou fausses.

Lorsqu'une question comporte un résultat numérique à vérifier, ce résultat doit être considéré comme « vrai » si l'égalité est vérifiée à $\pm 10\%$

ELECTRICITE GENERALE – SYSTEMES LINEAIRES

Question 1

On considère le schéma suivant :



$$I_1 = 1 \text{ mA}, I_2 = 5 \text{ mA}, R_1 = 5 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega$$

(A)
$$V = R_1.I_1 - R_2.I_2$$

(B) Pour que le courant I soit nul, il faut choisir $R_2 = 1 \text{ k}\Omega$.

On s'intéresse à la source équivalente de Thévenin équivalente vue entre les points A et B. On note V_{TH} la source de tension et R_{TH} la résistance qui la constituent.

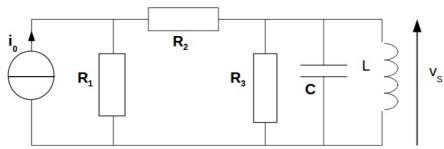
(C)
$$V_{TH} = (R_1, I_1 - R_2, I_2) \left(\frac{R_3}{R_1 + R_2 + R_3} \right)$$

(D)
$$R_{TH} = R_1 + R_2 + R_3$$

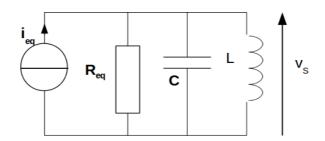
On s'intéresse maintenant à la source de Norton équivalente vue entre les points A et B. Elle est constituée de la source de courant I_N et de la résistance R_N .

(E)
$$I_N = \left(\frac{R_1 \cdot I_1 - R_2 \cdot I_2}{R_1 + R_2}\right)$$
 et $R_N = R_3 \cdot \left(\frac{R_1 + R_2}{R_1 + R_2 + R_3}\right)$

Soit le circuit suivant :

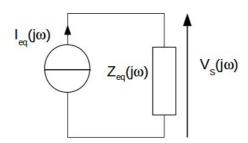


Son schéma équivalent est :



- **(A)** $i_{eq} = i_0$
- **(B)** $R_{eq} = (R_1 + R_2)//R_3$

En notations complexes, $I_{eq}(j\omega)$ et $V_s(j\omega)$ représentent les transformées de Fourier de $i_{eq}(t)$ et $v_s(t)$. Alors le montage peut être représenté par :



- (C) L'impédance $Z_{eq}(j\omega)$ a pour admittance $Y_{eq}(j\omega) = \frac{1}{R_{eq}} + j\omega C + \frac{1}{j\omega L}$
- (D) La relation entre $I_{\text{eq}}(j\omega)$ et $V_{\text{s}}(j\omega)$ est :

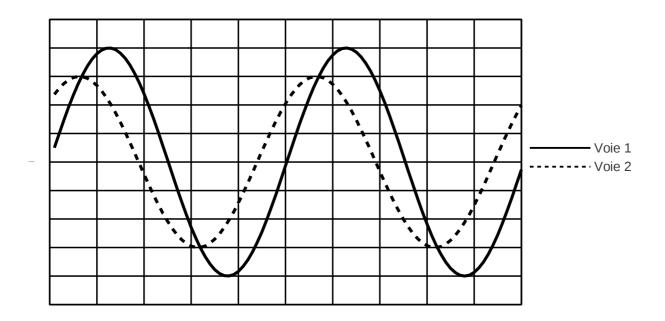
$$V_{s}(j\omega) = \frac{j\omega L}{R_{eq} + j\omega L - \omega^{2}LC} I_{eq}(j\omega)$$

(E) L'équation différentielle qui relie $i_{\text{0}}(t)$ et $v_{\text{s}}(t)$ est de la forme :

$$v_s(t) + \tau_1 . \frac{dv_s}{dt} + \tau_1 . \tau_2 . \frac{d^2v_s}{dt^2} = \tau_3 . \frac{di_0}{dt}$$
 où $\tau_1 = R_{eq}/L$, $\tau_2 = R_{eq}.C$ et $\tau_3 = L$

2

On visualise à l'oscilloscope l'entrée e(t) et la sortie s(t) d'un filtre linéaire.



L'entrée est connectée à la voie 1 et la sortie est reliée à la voie 2.

L'oscilloscope indique :

voie 1 – couplage AC – 0,5 V/div

voie 2 – couplage AC – 1 V/div

axe temporel: 10 ms/div

- **(A)** La période des signaux e(t) et s(t) est égale à 10 ms.
- **(B)** La valeur crête à crête de s(t) est égale à 6 V.
- **(C)** Le signal de sortie s(t) est en avance sur le signal d'entrée e(t).
- **(D)** Si e(t) est de la forme e(t)=E.sin(ω t), alors s(t) = 1,5.E.sin(ω t+ π /4)
- **(E)** Les composantes continues de e(t) et s(t) sont obligatoirement nulles.

On considère un système de signal d'entrée e(t), de sortie s(t) et défini par l'équation différentielle suivante :

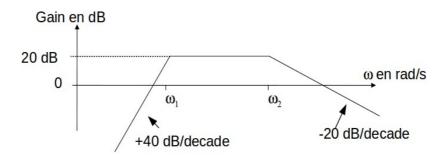
$$s(t) + \tau_1 \cdot \frac{ds}{dt} + \tau_1 \cdot \tau_2 \cdot \frac{d^2s}{dt^2} = \tau_1 \cdot \tau_2 \frac{d^2e}{dt^2}$$

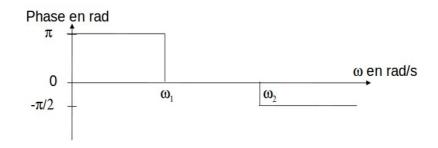
$$\tau_1=1 \text{ ms, } \tau_2 = 100 \text{ ms}$$

On s'intéresse à la réponse indicielle. On note E la hauteur de l'échelon appliqué en entrée : la transformée de Laplace E(p) s'écrit alors : E(p)= $\frac{E_0}{p}$. Les conditions initiales sont nulles.

- (A) En notant S(p) la transformée de Laplace de s(t), $S(p) = \frac{\tau_1.\tau_2.E_0.p}{1+\tau_1.p+\tau_1.\tau_2.p^2}$
- **(B)** La sortie s(t) admet comme valeur initiale $s(0^+) = 0$
- **(C)** La sortie s(t) tend vers 0 quand t tend vers l'infini.
- **(D)** La tangente à l'origine de s(t) est nulle.
- **(E)** s(t) présente un dépassement.

On considère un système d'entrée $E(j\omega)$ et de sortie $S(j\omega)$. Sa fonction de transfert est notée $H(j\omega)$. Les diagrammes de Bode asymptotiques sont les suivants :





 $\omega_1 = 1 \text{ krad/s}, \ \omega_2 = 100 \text{ krad/s}.$

(A) Pour $\omega = 1$ Mrad/s, le gain vaut 0 dB et la phase est quasiment égale à $-\pi/2$.

(B) Si $e(t) = 2.\sin(\omega_0.t)$ avec $\omega_0 = 10$ krad/s alors $s(t) = 40.\sin(\omega_0.t)$

(C) Il s'agit d'un filtre passe bande qui peut présenter une résonance au voisinage de ω_1 et au voisinage de ω_2 .

(D) L'amplification statique H_0 (à fréquence nulle) de ce système est nulle.

(E) La fonction de transfert $H_1(j\omega)$ présente les mêmes diagrammes de Bode asymptotiques :

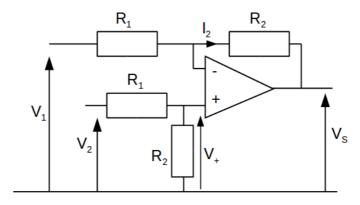
$$H_{1}(j\omega) = 10 \frac{\left(\frac{j\omega}{\omega_{1}}\right)^{2}}{1 + \frac{j\omega}{\omega_{2}}}$$

5

ELECTRONIQUE ANALOGIQUE

Question 6

Dans le montage suivant, l'amplificateur opérationnel est considéré comme idéal, il est alimenté entre + 15 V et - 15 V, ses impédances d'entrée sont infinies, sa tension de déchet est nulle et il fonctionne en régime linéaire non-saturé.

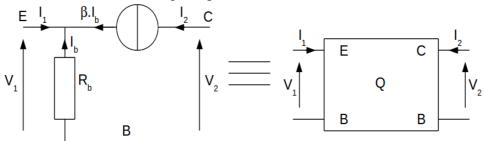


(A) Lorsque
$$V_2 = 0$$
, $V_S = -\left(1 + \frac{R_2}{R_1}\right)V_1$

- **(B)** La tension V⁺ peut s'écrire : V⁺= $\frac{R_2}{R_1 + R_2}$ V₂
- **(C)** Lorsque $V_1 = 0$, $V_S = V_2$
- **(D)** Lorsque $V_1 \neq 0$ et $V_2 \neq 0$, $V_S = \frac{R_2}{R_1} (V_2 V_1)$
- (E) La valeur absolue du courant I_2 est donnée par :

$$|I_2| = \left| \frac{V_1 - \frac{R_2}{R_1 + R_2} V_2}{R_1} \right|$$

On utilise un transistor bipolaire NPN monté en base commune. Dans cette configuration, le transistor est considéré comme un quadripôle dont le schéma est :



On rappelle la définition de la matrice (h):

$$\begin{pmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{pmatrix}$$

(A)
$$h_{21} = \frac{I_2}{I_1}|_{V_2=0}$$

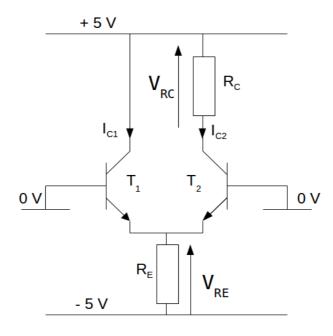
(B)
$$h_{21} = -\frac{\beta}{\beta + 1}$$

(C)
$$h_{12} = 0$$

(D) h₁₁ correspond à l'impédance d'entrée du transistor en base commune.

(E)
$$h_{11} = R_b$$

On étudie le circuit suivant :



On suppose que V_{BE} = 0,7 V pour un transistor bipolaire à l'état passant et β =150.

(A) Les transistors étant identiques et soumis à la même tension V_{BE} , on a I_{C1} = I_{C2}

(B)
$$I_{C1} = \frac{4,3}{R_E}$$

(C) La mise en équation selon la loi des mailles donne : $5 = R_c I_{c2} + 0.7 + R_E (I_{C1} + I_{C2})$

(D) Si
$$R_C = R_E$$
, alors $V_{RC} = V_{RE}$

(E) Si la chute de tension V_{RC} vaut 5,3V, alors le transistor T₂ fonctionne en régime linéaire.

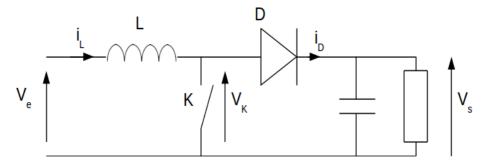
ELECTRONIQUE DE PUISSANCE:

Question 9

Pour l'étude du convertisseur suivant, la diode et l'interrupteur sont supposés parfaits et sans seuil.

Les tensions d'entrée V_e et de sortie V_s sont considérées constantes.

L'interrupteur a un fonctionnement périodique de période T : il est fermé entre 0 et α .T et ouvert entre α .T et T.



On s'intéresse au régime établi et on suppose que i_L(t) ne s'annule jamais.

- (A) Entre 0 et α .T, l'interrupteur K est fermé, la diode est bloquée, $V_K = 0$, $i_D(t) = 0$
- **(B)** Entre α . T et T, l'interrupteur K est ouvert, la diode est passante, $V_K = 0$, $i_D(t) = i_L(t)$
- (C) La valeur moyenne de V_K vaut $\alpha . V_s$
- **(D)** La valeur efficace de V_K vaut $\frac{V_s}{\sqrt{2}}$, quel que soit α .
- (E) Entre 0 et α .T, $L \frac{dI_L}{dt} = V_e$

Question 10

9

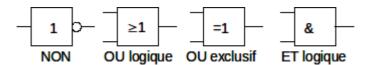
On s'intéresse au convertisseur de la question précédente.

- (A) Entre 0 et α .T, le courant $i_L(t)$ varie de ΔI_{L1} avec $|\Delta I_{L1}| = L.V_e.\alpha.T$
- **(B)** Entre α .T et T, $L \frac{di_L}{dt} = V_s V_e$
- (C) Entre α .T et T, le courant $i_L(t)$ varie de ΔI_{L2} avec $\left|\Delta I_{L2}\right| = \frac{\left|V_s V_e\right|.(1-\alpha)T}{L}$
- **(D)** En régime permanent, i_L(t) est périodique.
- **(E)** V_s est supérieure à V_e et $V_s = \frac{V_e}{1-\alpha}$

ELECTRONIQUE NUMERIQUE

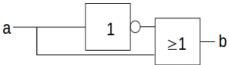
- . représente le ET logique
- + représente le OU logique
- ⊕ représente le OU exclusif

Les symboles logiques sont les suivants :

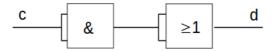


Question 11

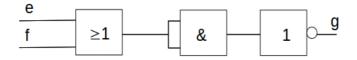
On considère les montages suivants :



(A) $b=\bar{a}$



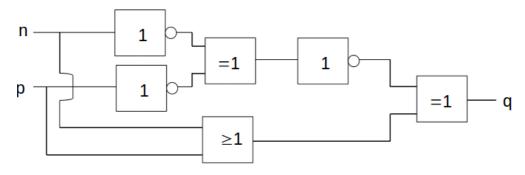
(B) d=0



(C) $g = \overline{e} + \overline{f}$



(D) $m = \overline{h} + \overline{k}$



(E) q = n + p

On considère un circuit numérique dont les entrées se nomment a, b, c et d, la sortie est nommée s.

Il répond au tableau de Karnaugh suivant :

	ab cd	00	01	11	10
	00	0	0	1	1
	01	1	0	1	0
	11	1	0	1	0
	10	0	0	1	1

- **(A)** Si a = b = c = 1 et d = 0, alors s = 1.
- **(B)** Si c = 1 et d = 1, alors s=1.
- (C) $s = b.\overline{a.c.d} + a.b.\overline{c.d} + \overline{a.b.c.d} + \overline{a.b.c.d} + \overline{a.b.c.d} + \overline{a.b.c.d} + a.b.\overline{c.d} + a.c.\overline{b.d}$
- **(D)** $s = b.\bar{c}.\bar{d} + c.d + \bar{b}.c$
- **(E)** s est indépendant de a.

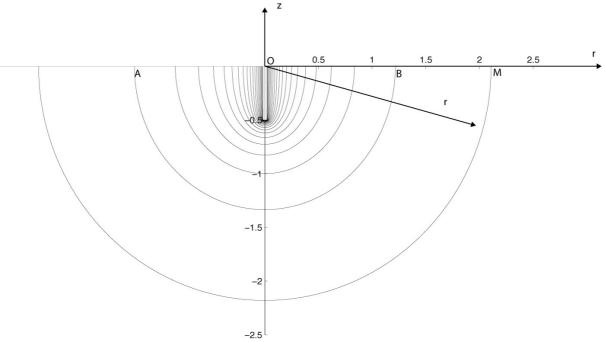
ELECTROMAGNETISME

Question 13

Soit un piquet de longueur 50 cm planté à la vertical (axe z) dans le sol de conductivité notée σ . Le piquet est porté au potentiel 1 V, le potentiel à l'infini étant égal à 0 V.

Le demi-espace correspondant à z > 0 est dans l'air, le demi-espace correspondant à z < 0 représente le sol.

Les équipotentielles dans le sol sont données par : (Oz est axe de symétrie de la figure)



On rappelle que la densité de courant \vec{J} est liée au champ électrique \vec{E} par la relation : $\vec{J} = \sigma \ \vec{E}$

Soit C_{AB} le contour fermé constitué de la droite AB et de l'équipotentielle BA Soit S_{AB} la surface fermée obtenue en faisant « tourner » le contour C_{AB} autour de l'axe Oz

- (A) Dans un milieu conducteur, les lignes de courant sont normales aux équipotentielles
- **(B)** Soit I le courant sortant du piquet, alors :

$$I = \iint_{S_{AB}} \vec{J} \cdot \vec{ds}$$

(C) La formule ci-dessus est fausse si la surface entourant le piquet ne suit pas les contours d'une équipotentielle

En un point sous la terre, suffisamment éloigné de l'origine, on admet :

$$V(r) = \frac{K}{r}$$

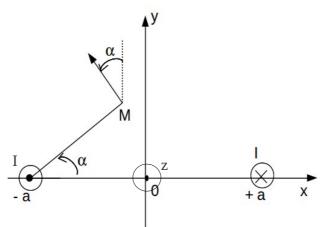
(D) Si r est suffisamment grand, on a alors :

$$||E(r)|| = \frac{K}{r^3}$$

12

(E) Pour r grand, $|I| = \sigma.K.2 \pi$

Soient deux fils infinis selon Oz, parcourus par des courants de sens opposés, et d'amplitude I. Le fil 1 est placé en x = + a, et le fil 2 en x = -a.



On note $\vec{B}_1(M)$, l'induction magnétique créée par le fil 1 en un point quelconque M, et $\vec{B}_2(M)$ l'induction créée par le fil 2 au même point.

- (A) Les composantes sur Oy de $\vec{B}_1(O)$ et de $\vec{B}_2(O)$ sont de même signe.
- **(B)** Soit l'induction totale $\vec{B}(O) = \vec{B}_1(O) + \vec{B}_2(O)$. Son module est égal à : $||\vec{B}(O)|| = \frac{\mu_0 I}{\pi a}$
- (C) Au point M, les composantes sur Oy de $\vec{B}_1(M)$ et $\vec{B}_2(M)$ ont le même signe.
- **(D)** Soit $B_{1y}(M)$ la composante verticale du champ créé par le fil 1. $B_{1y}(M) = \frac{\mu_0 I}{2 \pi r} \cos \alpha$
- **(E)** $B_1(M) = B_{1y}(M) + B_{2y}(M) = \frac{\mu_0 I}{2 \pi r^2} a$